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Abstract 
Renal cell carcinoma (RCC) is the most prevalent form 

of renal malignancy accounting for around 3% of all 

adult malignancies. Although new targeted 

medications are continually being developed, they are 

not able to treat all patients. Thus, a comprehensive 

investigation of the mode of progression and 

biomolecular mechanism of renal cancer is a need to 

identify its novel targets for better diagnostics and 

treatment strategies. We aim to identify the potential 

biomarkers of renal cancer, infer the cellular processes 

and pathways influenced by renal cancer, using in 

silico methods. We analysed three profiles of gene 

expression (GSE168845, GSE66270 and GSE781) 

from Gene Expression Omnibus (GEO) database to 

investigate possible treatment targets for RCC. 

Differentially expressed genes (DEGs) between RC and 

normal renal tissues were found using the GEO2R web 

program. Gene Ontology (GO) and KEGG pathway 

enrichment analysis were carried out using the Enrichr 

web-based tool. The DEGs were then organized into a 

protein-protein network using the STRING database 

tool. From an interaction network of multiple genes, we 

filtered the critical hub genes using the CytoHubba 

application of Cytoscape. To verify the predictive-

value of the hub genes, we performed survival-analysis 

using a renal cancer database by plotting the Kaplan-

Meier plots.  
 

We identified a set of 30 DEGs (24 upregulated genes 

and 6 downregulated genes). Most of the DEGs were 

active in signaling and transportation mechanisms. 

The PPI network and Cytohubba results revealed ten 

critical hub genes including UMOD, SLC34A1, 

SLC22A6, SLC12A1, RHCG, NPHS2, KCNJ1, G6PC, 

FABP1 and ALB. The Kaplan-Meier plotter database 

confirmed that few genes enhanced the chances of 

survival, while others decreased them and some genes 

had no effect on RC patient survival. The identification 

of DEGs and the enrichment of their biological 

functions/key pathways offers more precise 

information about RC and allows identification of 

crucial biomarkers which will aid future research and 

help in efficient therapeutic strategies. 
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Introduction 
Renal cell cancer or kidney cancer is the most common 

cancer in the genitourinary system with highest mortality 

rate1. It has a high mortality rate and is responsible for almost 

90% of all renal malignancies2. Furthermore, the prevalence 

of Renal Cell Carcinoma (RCC) has been continuously 

increasing during the past few decades3. Based on 

histopathological features, clinical phenotype and molecular 

biology, renal cell carcinoma may be categorized into four 

broad categories: clear cell RCC, papillary RCC, 

chromophobe RCC and collecting duct RCC. Clear cell RCC 

(CCRCC) contributes for 85 percent of them4. Diagnoses 

based on clinical signs, imaging, renal biopsy and other 

factors are commonly used to identify this disease.  

 

However, few patients with tiny renal masses (RMs) have no 

clinical abnormalities until late in the disease and 30% of 

them have distant metastases when they are identified with 

clear cell RCC with the worst prognosis in the urinary 

system5,6. As a result, a sensitive and accurate CCRCC 

diagnostic approach is urgently required. 

 

Renal cell carcinoma is resistant to all chemotherapeutic 

drugs and intense radio treatments7 due to which surgically 

removing the cancerous tissues remains the only effective 

treatment. RCC has also shown limited sensitivity towards 

targeted treatments or immunotherapy8,9. This disease has a 

complicated etiology, caused by the complex interactions 

among genes. Studies over the past decades have identified 

VHL (von Hippel-Lindau), p53, p16, p21 and p27 as the 

primary tumor suppressor genes in RCC. It is evident that 

loss of function of VHL and p53 is critically associated with 

cancer10.  

 

VHL dysfunction causes constitutively abnormal hypoxia 

response activation such as overexpression of vascular 

endothelial growth factor (VEGF) enhancing tumor 

formation and angiogenesis11,12. In RCC, p53 has been 

demonstrated to inhibit tumor development and promote cell 

death13,14.  

 

Despite this significant knowledge in RCC disease, the 

molecular pathways behind this illness remain unknown. 

Due to the limited knowledge about the disease's etiology 

and pathophysiology, there are currently no effective 

treatments for renal cancer. As a result, investigation into the 

molecular processes is needed to identify the causative 

factors and critical molecular markers of renal cancer to 

investigate novel therapeutic options for the treatment of this 

disease. Biological interaction networks provide an exciting 
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opportunity to understand the molecular mechanisms behind 

complex diseases, interactions between different proteins 

and identification of potential drug targets. In recent studies, 

human RCC profiles are also generated using network 

analysis15,16. 

 

In this study, we critically analyzed top 30 Differentially 

Expressed Genes (DEGs) identified by performing a 

comparative investigation of the datasets of renal cancer 

patients with the control sample from the GEO database. We 

then performed the enrichment analysis (Gene Ontology) of 

the gene sets. To group genes into their active pathways, we 

used Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database. We filtered 10 hub genes as potential biomarkers 

of renal cancer by identifying the protein-protein 

associations of the DEGs using STRING database and 

Cytoscape software. Finally, we fit the Kaplan-Meier plots 

to perform the overall survival analyses of the hub genes 

using the ‘‘Renal cancer’’ database. 

 

Material and Methods 
Microarray data collection: For this study, three 

microarray datasets were obtained from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo) with the query “Human 

Renal Cancer”. After a critical review, three gene expression 

profiles (GSE168845, GSE66270 and GSE781) were 

selected for gene expression analysis. Among them, 

GSE168845 is based on GPL21185 platform (Agilent-

072363 SurePrint G3 Human GE3 860K Microarray 

039494), GSE66270 is based on GPL570 ([HG-

U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 

Array) and GSE781 is of platform GPL96 ([HG-U133A] 

Affymetrix Human Genome U133A Array). 

 

Screening for Differentially Expressed Genes (DEGs): 
We used GEO2R web-based tool of NCBI 

(https://www.ncbi.nlm.nih.gov/geo/geo2r/) to screen the 

differentially expressed genes among 3 datasets analyzing 

the samples as renal cancer and normal tissues. We 

employed the Benjamini and Hochberg (False discovery 

rate) to calculate the adjusted p-values. Genes that satisfied 

the threshold |logFC| >1.0 and P-value <0.05 were 

shortlisted for further analysis. As the number of DEGs 

discovered is so large, so another cut of |logFC| value was 

set to find the most critical DEGs for upregulated genes 

|logFC| ≥ 4 and for downregulated |logFC| ≤ -4 was taken. 

The Venn diagram was created to find out common DEGs 

among the 3 expression profiles using an online tool 

(https://bioinformatics.psb.ugent.be/webtools/Venn/). 

 

Functional Enrichment and Pathway Analysis: The 

Enrichr classification system (https://maayanlab.cloud/ 

Enrichr) was used to do an enrichment analysis of the key 

differentially expressed genes that were significantly up and 

down regulated. Using the Enrichr classification system, the 

DEGs were categorized based on their molecular function 

(MF), biological process (BP) and cellular component (CC). 

Further, the pathway analysis was carried out using the 

KEGG database in Enricher. KEGG database is enriched 

with wide information about gene function, biological 

pathways, genomes and diseases. 

 

Protein-Protein Interaction (PPI) network and 
identification of critical hub genes: To generate the PPI 

networks, the DEGs were processed via a web-based PPI 

network generation tool, the Search Tool for the Retrieval of 

Interacting Genes (STRING) database (https://string-

db.org/). The topology of the PPI network was then 

examined using the Cytoscape program 

(http://www.cytoscape.org/). CytoHubba, a Cytoscape 

plugin program, was used to compute the degree of each 

protein node. Hub genes were defined as those with scores 

of 10 or more gene degrees in the PPI network. 

  

Survival analysis of hub genes:   The Kaplan–Meier plotter 

(http://kmplot.com/analysis/), a web-based tool was used to 

perform the survival analyses of each hub gene with 95% 

confidence of the hazard ratio (HR). 

 

Results 
Identification of DEGs: Among the three selected renal 

cancer microarray datasets (GSE168845, GSE66270, 

GSE781), GSE168845 comprised of 8 samples (4 control 

and 4 renal cancer), GSE66270 had 28 samples (14 control 

and 14 renal cancer) and GSE781 comprised of 17 samples 

(8 control and 9 renal cancer). GEO2R was used to compare 

and to screen the DEGs between control and renal cancer 

with the set threshold criteria of |logFC| >1.0 and P-value 

<0.05. The results obtained with these thresholds ≥ 4 for 

upregulated and of |logFC| ≤ -4 were downregulated. We 

screened 569 DEGs from GSE168845 which included 410 

genes upregulated and 159 genes downregulated.  

 

Similarly, for dataset GSE66270, 394 DEGs were 

identified which included 272 upregulated and 122 

downregulated. And for dataset GSE781, a set of 69 DEGs 

containing 55 upregulated and 6 downregulated was 

identified.  The volcano plots showing the DEGs from our 

three gene expression profiles are shown in figure 1 (A, B 

and C) respectively. 

 

We performed Venn analysis to screen the common up 

regulated and down regulated DEGs among all three datasets 

shown in figure 2 (A and B). A set of 30 critical genes were 

found common amongst all three groups, of which 24 were 

significantly upregulated genes and 6 were downregulated 

(Table 1). 

 

Functional enrichment analyses of DEGs: The enrichment 

analysis for GO function and KEGG pathway for DEGs was 

performed using the Enrichr. The GO terms with enrichment 

scores included molecular function (MF), biological process 

(BP) and cellular component (CC) ontologies. The results of 

gene ontology enrichment analyses revealed that the DEGs 

are mainly enriched in BP including sodium-independent 

organic anion transport, negative regulation of lipase 
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activity, transmembrane transport, monovalent inorganic 

anion homeostasis, organic substance transport and 

triglyceride catabolic process (Figure 3A).  

 

In terms of molecular functions, DEGs are enriched in 

monovalent inorganic cation transmembrane transporter 

activity, ion antiporter activity, anion: anion antiporter 

activity, inorganic anion exchanger activity, secondary 

active transmembrane transporter activity and sodium ion 

transmembrane transporter activity (Figure 3B). In CC, the 

DEGs are enriched in platelet alpha granule, platelet alpha 

granule lumen, secretory granule lumen, actin-based cell 

projections, very low density lipoprotein particle and 

vacuolar proton- transporting V- type ATPase complex 

(Figure 3C). Our results highlight the active involvement of 

most of the DEGs in transport mechanism, cell signaling and 

binding. 

 

The results of KEGG analysis reveal the active participation 

of our DEGs in the PPAR signalling pathway, compliments 

and coagulation  cascade,  collecting  duct  caid  secretion,  

cholesterol metabolism and tyrosine metabolism (Figure 

3D).

 

 
Figure 1: DEGs between RC samples and normal samples.  

(A) The volcano plot for DEGs in GSE168845 data. (B) The volcano plot for DEGs in GSE66270 data.  

(C) The volcano plot for DEGs in GSE781 data. X-axes index the log fold change and Y-axes index the –log (P-value). 

The red dots represent upregulated genes screened based on fold change > 1.0 and adjusted P value of < 0.05.  

The blue dots represent downregulated genes screened based on fold changes > 1.0 and adjusted P value of < 0.05. 

The black dots represent genes with no significance 

 

 
Figure 2: Venn diagram representing the overlaps between three GEO datasets.  

(A) Venn diagram illustrating overlapping upregulated genes in GSE168845, GSE66270 and GSE781 dataset.  

(B) Venn diagram illustrating overlapping downregulated genes in GSE168845, GSE66270 and GSE781 dataset. 

 

Table 1 

Screened DEGs in renal cancer by integrated microarray 

Upregulated RALYL PLG SLC22A8 HPD UMOD CALB1 DIO1 KCNJ1 CLDN8 

 OLFM4 FABP1 G6PC NPHS2 ALB SLC12A1 ALDOB SLC22A6 

 RHCG ATP6V1B1 SERPINA5 CLCNKB KNG1 SLC34A1 

Downregulated TNFAIP6 NDUFA4L2 NPTX2 FABP7 ANGPTL4 APOC1 
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Figure 3: GO term and KEGG pathway enrichment analyses performed using Enrichr on DEGs identified from GC 

samples and normal samples. (A) The top 10 enriched biological process for DEGs. The horizontal axis represents the 

number of genes and Y-axis represents biological process. (B) The top 10 enriched molecular function for DEGs.  

The horizontal axis represents the number of genes and Y-axis represents molecular function.  

(C) The top 10 enriched cellular component for DEGs. The horizontal axis represents the number of genes and  

Y-axis represents cellular component. (D) The top 10 enriched KEGG pathway for DEGs.  

The horizontal axis represents the number of genes and Y-axis represents KEGG pathway. 
 

 
Figure 4: STRING protein-protein interaction network of 24 upregulated and 6 downregulated genes.  

The network includes 29 nodes and 46 edges. Circles represent genes, lines represent the interaction of proteins 

between genes and the results within the circle represent the structure of protein.  

Line colour represent evidence of the interaction between the proteins. 
 

 
Figure 5: Subnetwork of top ten hub genes from protein-protein interaction network using Cytoscape software.  

Node colour reflects degree of connectivity. The pseudocolour scale from red to yellow represents and  

top nine hub rank from 1-10. Red colour represents highest degree and orange colour represents  

intermedia degree and yellow colour represents lowest degree 



Research Journal of Biotechnology                                                                                                      Vol. 21 (2) February (2026)  
Res. J. Biotech. 

https://doi.org/10.25303/212rjbt2860292      290 

 
Figure 6: Kaplan-Meier overall survival analysis for the top nine hub genes expressed in GC patient’s samples, 

Kaplan-Meier plot of overall survival in subjects with low versus high. 

(A) UMOD, (B) SLC34A1, (C) SLC22A6, (D) SLC12A1, (E) RHCG, (F) NPHS2, (G) KCNJ1, (H) G6PC,  

(I) FABP1 and (J) ALB mRNA expression 

 

Protein-protein interaction network and critical hub 

gene identification: Protein interactions and associations 

among the different differentially expressed genes were 

identified using the web-based STRING-DB tool. A 

complex interaction network of 29 nodes representing 

proteins and 46 edges representing interactions was 

constructed as represented in figure 4. We then evaluated the 

top ten genes ranking them by their connectivity degree in 

the protein-protein interaction network using Cytohubba, as 

presented in figure 5. 

 

The results showed that Solute Carrier Family 12 Member 1 

(SLC12A1) gene had the highest connectivity degree  =  59,  

followed  by  sodium-dependent  phosphate  transport  

protein  2A(SLC34A1 degree = 54), Stomatin Family 

Member, Podocin (NPHS2 degree = 53), potassium 58 

Inwardly Rectifying Channel Subfamily J Member 1 

(KCNJ1 degree= 51), Uromodulin (UMOD degree = 36), 

Rhesus Blood Group Family Type C Glycoprotein (RHCG 

degree = 26), albumin (ALB degree = 17), Fatty Acid 

Binding Protein 1 (FABP1 degree = 7), Solute Carrier 

Family 22 Member 6 (SLC22A6 degree = 6) and Glucose-

6-Phosphatase Catalytic Subunit 1 (G6PC degree = 4). All 

these genes were observed to be upregulated in case of our 

renal cancer gene expression 

 

Survival analysis of hub genes: The prognostic values of 

the 10 hub genes were further evaluated by performing the 

survival analysis (Figure 6) on the available dataset of 530 

RC patients on the Kaplan–Meier plotter platform. The 

survival curves of two critical hub genes KCNJ1 and RHCG, 

were showing adverse effects on overall survival in GC 

patients. Also, four hub genes namely, ALB, NPHS2, 

SLC12A1 and UMOD were not associated with over 
survival in renal cancer patients. Furthermore, four 

significant up-regulated genes namely, FABP1, G6PC, 

SLC22A6 and SLC34A1, were assessed to be strongly 

linked with favourable survival in renal cancer patients. 

 

Discussion 
Investigation of critical biomarkers of complex disease such 

as cancer is important for diagnosis and treatment17. In this 

study, we performed analysis of 3 high-throughput gene 

expression datasets of RC versus normal human renal tissue 

and screened a set of 30 DEGs (24 upregulated DEGs and 6 

downregulated DEGs). We enriched the DEGs among 

different ontologies based on their molecular function, 

biological process and cellular component. It was evident 

that most of the DEGs were actively participating in sodium-

independent organic anion transport, negative regulation of 

lipase activity, transmembrane transport, monovalent 

inorganic anion homeostasis, organic substance transport 

and triglyceride catabolic process.  

 

The distribution of DEGs across KEGG pathway majorly 

includes the signaling pathways such as PPAR signaling 

pathway, compliments and coagulation cascade, collecting 

duct caid secretion, cholesterol metabolism and tyrosine 

metabolism. A PPI network of the DEGs was constructed to 

study the correlations among them. The ten most 

interconnected genes were screened including UMOD, 

SLC34A1, SLC22A6, SLC12A1, RHCG, NPHS2, KCNJ1, 

G6PC, FABP1 and ALB which were found to be up 

regulated in RC patients.  

 

Also, we assessed the effect of these hub genes on survival 

of RC patients KCNJ1 and RHCG which was associated to 

a poor prognosis in RC patients. In clear cell renal cell18.   

 

By inhibiting NF-B Signaling and MMP1 Expression, 

RHCG is reported in reducing Tumorigenicity and 

Metastasis in Esophageal Squamous Cell Carcinoma19. 
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Upregulation of FABP1, G6PC, SLC22A6 and SLC34A1 

was found to be favourable prognostic indicators in RC22,23. 

 

The genes SLC22A6 and SLC34A1 were among the top ten 

genes in terms of connectivity. The soluble carrier (SLC) 

family encodes passive transporters, ion coupled 

transporters and exchanger genes that play a significant role 

in cell metabolism. Elevated expression of nutrient 

transporter proteins is associated with glucose transport for 

the aggressive and highly proliferating malignant cancers24. 

The SLC34A1 of this family is a sodium-dependent Pi 

Cotransporter Involved in multiple diseases21. Our results 

identified several associations of SLC gene expression with 

prognosis of RC patients, indicating that these genes may 

represent possible oncogenes that could serve as therapeutic 

targets of RC. 

 

Conclusion 
Using an integrated bioinformatics method, we discovered 

that 10 hub genes are important in renal cancer. We built a 

complex PPI network of 29 shortlisted DEGs with 46 key 

connecting linkages. The most highly enriched sub-networks 

and hub genes were discovered to be involved in biological 

process including sodium-independent organic anion 

transport, negative regulation of lipase activity, 

transmembrane transport, monovalent inorganic anion 

homeostasis, organic substance transport and triglyceride 

catabolic process.  

 

These findings aid our understanding of the cause and 

molecular events that contribute to renal cancer. These 

potential gene targets could be leveraged to develop efficient 

diagnostics and therapies. 
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