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Abstract

Renal cell carcinoma (RCC) is the most prevalent form
of renal malignancy accounting for around 3% of all
adult  malignancies.  Although new targeted
medications are continually being developed, they are
not able to treat all patients. Thus, a comprehensive
investigation of the mode of progression and
biomolecular mechanism of renal cancer is a need to
identify its novel targets for better diagnostics and
treatment strategies. We aim to identify the potential
biomarkers of renal cancer, infer the cellular processes
and pathways influenced by renal cancer, using in
silico methods. We analysed three profiles of gene
expression (GSE168845, GSE66270 and GSE781)
from Gene Expression Omnibus (GEO) database to
investigate possible treatment targets for RCC.
Differentially expressed genes (DEGs) between RC and
normal renal tissues were found using the GEO2R web
program. Gene Ontology (GO) and KEGG pathway
enrichment analysis were carried out using the Enrichr
web-based tool. The DEGs were then organized into a
protein-protein network using the STRING database
tool. From an interaction network of multiple genes, we
filtered the critical hub genes using the CytoHubba
application of Cytoscape. To verify the predictive-
value of the hub genes, we performed survival-analysis
using a renal cancer database by plotting the Kaplan-
Meier plots.

We identified a set of 30 DEGs (24 upregulated genes
and 6 downregulated genes). Most of the DEGs were
active in signaling and transportation mechanisms.
The PPI network and Cytohubba results revealed ten
critical hub genes including UMOD, SLC34Al,
SLC22A6, SLC12A1, RHCG, NPHS2, KCNJ1, G6PC,
FABP1 and ALB. The Kaplan-Meier plotter database
confirmed that few genes enhanced the chances of
survival, while others decreased them and some genes
had no effect on RC patient survival. The identification
of DEGs and the enrichment of their biological
functions/key  pathways offers more precise
information about RC and allows identification of
crucial biomarkers which will aid future research and
help in efficient therapeutic strategies.
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Introduction

Renal cell cancer or kidney cancer is the most common
cancer in the genitourinary system with highest mortality
rate!. It has a high mortality rate and is responsible for almost
90% of all renal malignancies?. Furthermore, the prevalence
of Renal Cell Carcinoma (RCC) has been continuously
increasing during the past few decades®. Based on
histopathological features, clinical phenotype and molecular
biology, renal cell carcinoma may be categorized into four
broad categories: clear cell RCC, papillary RCC,
chromophobe RCC and collecting duct RCC. Clear cell RCC
(CCRCC) contributes for 85 percent of them*. Diagnoses
based on clinical signs, imaging, renal biopsy and other
factors are commonly used to identify this disease.

However, few patients with tiny renal masses (RMs) have no
clinical abnormalities until late in the disease and 30% of
them have distant metastases when they are identified with
clear cell RCC with the worst prognosis in the urinary
system®6, As a result, a sensitive and accurate CCRCC
diagnostic approach is urgently required.

Renal cell carcinoma is resistant to all chemotherapeutic
drugs and intense radio treatments’ due to which surgically
removing the cancerous tissues remains the only effective
treatment. RCC has also shown limited sensitivity towards
targeted treatments or immunotherapy®®. This disease has a
complicated etiology, caused by the complex interactions
among genes. Studies over the past decades have identified
VHL (von Hippel-Lindau), p53, p16, p21 and p27 as the
primary tumor suppressor genes in RCC. It is evident that
loss of function of VHL and p53 is critically associated with
cancer,

VHL dysfunction causes constitutively abnormal hypoxia
response activation such as overexpression of vascular
endothelial growth factor (VEGF) enhancing tumor
formation and angiogenesist**2. In RCC, p53 has been
demonstrated to inhibit tumor development and promote cell
death'314,

Despite this significant knowledge in RCC disease, the
molecular pathways behind this illness remain unknown.
Due to the limited knowledge about the disease's etiology
and pathophysiology, there are currently no effective
treatments for renal cancer. As a result, investigation into the
molecular processes is needed to identify the causative
factors and critical molecular markers of renal cancer to
investigate novel therapeutic options for the treatment of this
disease. Biological interaction networks provide an exciting
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opportunity to understand the molecular mechanisms behind
complex diseases, interactions between different proteins
and identification of potential drug targets. In recent studies,
human RCC profiles are also generated using network
analysis!®16,

In this study, we critically analyzed top 30 Differentially
Expressed Genes (DEGs) identified by performing a
comparative investigation of the datasets of renal cancer
patients with the control sample from the GEO database. We
then performed the enrichment analysis (Gene Ontology) of
the gene sets. To group genes into their active pathways, we
used Kyoto Encyclopedia of Genes and Genomes (KEGG)
database. We filtered 10 hub genes as potential biomarkers
of renal cancer by identifying the protein-protein
associations of the DEGs using STRING database and
Cytoscape software. Finally, we fit the Kaplan-Meier plots
to perform the overall survival analyses of the hub genes
using the ‘‘Renal cancer’’ database.

Material and Methods

Microarray data collection: For this study, three
microarray datasets were obtained from the GEO database
(https://www.ncbi.nlm.nih.gov/geo) with the query “Human
Renal Cancer”. After a critical review, three gene expression
profiles (GSE168845, GSE66270 and GSE781) were
selected for gene expression analysis. Among them,
GSE168845 is based on GPL21185 platform (Agilent-
072363 SurePrint G3 Human GE3 860K Microarray
039494), GSE66270 is based on GPL570 ([HG-
U133 Plus_2] Affymetrix Human Genome U133 Plus 2.0
Array) and GSE781 is of platform GPL96 (JHG-U133A]
Affymetrix Human Genome U133A Array).

Screening for Differentially Expressed Genes (DEGS):
We used GEO2R web-based tool of NCBI
(https://www.nchi.nlm.nih.gov/geo/geo2r/) to screen the
differentially expressed genes among 3 datasets analyzing
the samples as renal cancer and normal tissues. We
employed the Benjamini and Hochberg (False discovery
rate) to calculate the adjusted p-values. Genes that satisfied
the threshold |logFC| >1.0 and P-value <0.05 were
shortlisted for further analysis. As the number of DEGs
discovered is so large, so another cut of |logFC| value was
set to find the most critical DEGs for upregulated genes
[logFC| > 4 and for downregulated |logFC| < -4 was taken.
The Venn diagram was created to find out common DEGs
among the 3 expression profiles using an online tool
(https://bioinformatics.psb.ugent.be/webtools/\VVenn/).

Functional Enrichment and Pathway Analysis: The
Enrichr classification system (https://maayanlab.cloud/
Enrichr) was used to do an enrichment analysis of the key
differentially expressed genes that were significantly up and
down regulated. Using the Enrichr classification system, the
DEGs were categorized based on their molecular function
(MF), biological process (BP) and cellular component (CC).
Further, the pathway analysis was carried out using the
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KEGG database in Enricher. KEGG database is enriched
with wide information about gene function, biological
pathways, genomes and diseases.

Protein-Protein  Interaction (PPI) network and
identification of critical hub genes: To generate the PPI
networks, the DEGs were processed via a web-based PPI
network generation tool, the Search Tool for the Retrieval of
Interacting Genes (STRING) database (https:/string-
db.org/). The topology of the PPI network was then
examined using the Cytoscape program
(http://www.cytoscape.org/). CytoHubba, a Cytoscape
plugin program, was used to compute the degree of each
protein node. Hub genes were defined as those with scores
of 10 or more gene degrees in the PPI network.

Survival analysis of hub genes: The Kaplan—Meier plotter
(http://kmplot.com/analysis/), a web-based tool was used to
perform the survival analyses of each hub gene with 95%
confidence of the hazard ratio (HR).

Results

Identification of DEGs: Among the three selected renal
cancer microarray datasets (GSE168845, GSE66270,
GSE781), GSE168845 comprised of 8 samples (4 control
and 4 renal cancer), GSE66270 had 28 samples (14 control
and 14 renal cancer) and GSE781 comprised of 17 samples
(8 control and 9 renal cancer). GEO2R was used to compare
and to screen the DEGs between control and renal cancer
with the set threshold criteria of |logFC| >1.0 and P-value
<0.05. The results obtained with these thresholds > 4 for
upregulated and of [logFC| < -4 were downregulated. We
screened 569 DEGs from GSE168845 which included 410
genes upregulated and 159 genes downregulated.

Similarly, for dataset GSE66270, 394 DEGs were
identified which included 272 upregulated and 122
downregulated. And for dataset GSE781, a set of 69 DEGs
containing 55 upregulated and 6 downregulated was
identified. The volcano plots showing the DEGs from our
three gene expression profiles are shown in figure 1 (A, B
and C) respectively.

We performed Venn analysis to screen the common up
regulated and down regulated DEGs among all three datasets
shown in figure 2 (A and B). A set of 30 critical genes were
found common amongst all three groups, of which 24 were
significantly upregulated genes and 6 were downregulated
(Table 1).

Functional enrichment analyses of DEGs: The enrichment
analysis for GO function and KEGG pathway for DEGs was
performed using the Enrichr. The GO terms with enrichment
scores included molecular function (MF), biological process
(BP) and cellular component (CC) ontologies. The results of
gene ontology enrichment analyses revealed that the DEGs
are mainly enriched in BP including sodium-independent
organic anion transport, negative regulation of lipase
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activity, transmembrane transport, monovalent inorganic
anion homeostasis, organic substance transport and
triglyceride catabolic process (Figure 3A).

In terms of molecular functions, DEGs are enriched in
monovalent inorganic cation transmembrane transporter
activity, ion antiporter activity, anion: anion antiporter
activity, inorganic anion exchanger activity, secondary
active transmembrane transporter activity and sodium ion
transmembrane transporter activity (Figure 3B). In CC, the
DEGs are enriched in platelet alpha granule, platelet alpha
granule lumen, secretory granule lumen, actin-based cell
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projections, very low density lipoprotein particle and
vacuolar proton- transporting V- type ATPase complex
(Figure 3C). Our results highlight the active involvement of
most of the DEGs in transport mechanism, cell signaling and
binding.

The results of KEGG analysis reveal the active participation
of our DEGs in the PPAR signalling pathway, compliments
and coagulation cascade, collecting duct caid secretion,
cholesterol metabolism and tyrosine metabolism (Figure
3D).
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Figure 1: DEGs between RC samples and normal samples.
(A) The volcano plot for DEGs in GSE168845 data. (B) The volcano plot for DEGs in GSE66270 data.

(C) The volcano plot for DEGs in GSE781 data. X-axes index the log fold change and Y-axes index the —log (P-value).
The red dots represent upregulated genes screened based on fold change > 1.0 and adjusted P value of < 0.05.
The blue dots represent downregulated genes screened based on fold changes > 1.0 and adjusted P value of < 0.05.
The black dots represent genes with no significance
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Figure 2: Venn diagram representing the overlaps between three GEO datasets.
(A) Venn diagram illustrating overlapping upregulated genes in GSE168845, GSE66270 and GSE781 dataset.
(B) Venn diagram illustrating overlapping downregulated genes in GSE168845, GSE66270 and GSE781 dataset.

Table 1
Screened DEGs in renal cancer by integrated microarray

Upregulated

RALYL PLG SLC22A8 HPD UMOD CALB1 DIO1 KCNJ1 CLDNS8

OLFM4 FABP1 G6PC NPHS2 ALB SLC12A1 ALDOB SLC22A6

RHCG ATP6V1B1 SERPINAS CLCNKB KNG1 SLC34Al1

Downregulated

TNFAIP6 NDUFA4L2 NPTX2 FABP7 ANGPTL4 APOC1
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Figure 3: GO term and KEGG pathway enrichment analyses performed using Enrichr on DEGs identified from GC
samples and normal samples. (A) The top 10 enriched biological process for DEGs. The horizontal axis represents the
number of genes and Y-axis represents biological process. (B) The top 10 enriched molecular function for DEGs.
The horizontal axis represents the number of genes and Y-axis represents molecular function.

(C) The top 10 enriched cellular component for DEGs. The horizontal axis represents the number of genes and
Y-axis represents cellular component. (D) The top 10 enriched KEGG pathway for DEGs.

The horizontal axis represents the number of genes and Y-axis represents KEGG pathway.

Figure 4: STRING protein-protein interaction network of 24 upregulated and 6 downregulated genes.
The network includes 29 nodes and 46 edges. Circles represent genes, lines represent the interaction of proteins
between genes and the results within the circle represent the structure of protein.
Line colour represent evidence of the interaction between the proteins.
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Figure 5: Subnetwork of top ten hub genes from protein-protein interaction network using Cytoscape software.
Node colour reflects degree of connectivity. The pseudocolour scale from red to yellow represents and
top nine hub rank from 1-10. Red colour represents highest degree and orange colour represents
intermedia degree and yellow colour represents lowest degree
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Figure 6: Kaplan-Meier overall survival analysis for the top nine hub genes expressed in GC patient’s samples,
Kaplan-Meier plot of overall survival in subjects with low versus high.
(A) UMOD, (B) SLC34A1, (C) SLC22A6, (D) SLC12A1, (E) RHCG, (F) NPHS2, (G) KCNJ1, (H) G6PC,
(I) FABP1 and (J) ALB mRNA expression

Protein-protein interaction network and critical hub
gene identification: Protein interactions and associations
among the different differentially expressed genes were
identified using the web-based STRING-DB tool. A
complex interaction network of 29 nodes representing
proteins and 46 edges representing interactions was
constructed as represented in figure 4. We then evaluated the
top ten genes ranking them by their connectivity degree in
the protein-protein interaction network using Cytohubba, as
presented in figure 5.

The results showed that Solute Carrier Family 12 Member 1
(SLC12A1) gene had the highest connectivity degree = 59,
followed by sodium-dependent phosphate transport
protein  2A(SLC34A1 degree = 54), Stomatin Family
Member, Podocin (NPHS2 degree = 53), potassium 58
Inwardly Rectifying Channel Subfamily J Member 1
(KCNJ1 degree= 51), Uromodulin (UMOD degree = 36),
Rhesus Blood Group Family Type C Glycoprotein (RHCG
degree = 26), albumin (ALB degree = 17), Fatty Acid
Binding Protein 1 (FABP1 degree = 7), Solute Carrier
Family 22 Member 6 (SLC22A6 degree = 6) and Glucose-
6-Phosphatase Catalytic Subunit 1 (G6PC degree = 4). All
these genes were observed to be upregulated in case of our
renal cancer gene expression

Survival analysis of hub genes: The prognostic values of
the 10 hub genes were further evaluated by performing the
survival analysis (Figure 6) on the available dataset of 530
RC patients on the Kaplan—Meier plotter platform. The
survival curves of two critical hub genes KCNJ1 and RHCG,
were showing adverse effects on overall survival in GC
patients. Also, four hub genes namely, ALB, NPHS2,
SLC12A1 and UMOD were not associated with over
survival in renal cancer patients. Furthermore, four
significant up-regulated genes namely, FABP1, G6PC,
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SLC22A6 and SLC34A1, were assessed to be strongly
linked with favourable survival in renal cancer patients.

Discussion

Investigation of critical biomarkers of complex disease such
as cancer is important for diagnosis and treatment®’. In this
study, we performed analysis of 3 high-throughput gene
expression datasets of RC versus normal human renal tissue
and screened a set of 30 DEGs (24 upregulated DEGs and 6
downregulated DEGs). We enriched the DEGs among
different ontologies based on their molecular function,
biological process and cellular component. It was evident
that most of the DEGs were actively participating in sodium-
independent organic anion transport, negative regulation of
lipase activity, transmembrane transport, monovalent
inorganic anion homeostasis, organic substance transport
and triglyceride catabolic process.

The distribution of DEGs across KEGG pathway majorly
includes the signaling pathways such as PPAR signaling
pathway, compliments and coagulation cascade, collecting
duct caid secretion, cholesterol metabolism and tyrosine
metabolism. A PPl network of the DEGs was constructed to
study the correlations among them. The ten most
interconnected genes were screened including UMOD,
SLC34A1, SLC22A6, SLC12A1, RHCG, NPHS2, KCNJ1,
G6PC, FABP1 and ALB which were found to be up
regulated in RC patients.

Also, we assessed the effect of these hub genes on survival
of RC patients KCNJ1 and RHCG which was associated to
a poor prognosis in RC patients. In clear cell renal cell®.

By inhibiting NF-B Signaling and MMP1 Expression,

RHCG is reported in reducing Tumorigenicity and
Metastasis in Esophageal Squamous Cell Carcinoma?®®.
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Upregulation of FABP1, G6PC, SLC22A6 and SLC34A1
was found to be favourable prognostic indicators in RC?2%,

The genes SLC22A6 and SLC34A1 were among the top ten
genes in terms of connectivity. The soluble carrier (SLC)
family encodes passive transporters, ion coupled
transporters and exchanger genes that play a significant role
in cell metabolism. Elevated expression of nutrient
transporter proteins is associated with glucose transport for
the aggressive and highly proliferating malignant cancers?.
The SLC34A1 of this family is a sodium-dependent Pi
Cotransporter Involved in multiple diseases?. Our results
identified several associations of SLC gene expression with
prognosis of RC patients, indicating that these genes may
represent possible oncogenes that could serve as therapeutic
targets of RC.

Conclusion

Using an integrated bioinformatics method, we discovered
that 10 hub genes are important in renal cancer. We built a
complex PPI network of 29 shortlisted DEGs with 46 key
connecting linkages. The most highly enriched sub-networks
and hub genes were discovered to be involved in biological
process including sodium-independent organic anion
transport, negative regulation of lipase activity,
transmembrane transport, monovalent inorganic anion
homeostasis, organic substance transport and triglyceride
catabolic process.

These findings aid our understanding of the cause and
molecular events that contribute to renal cancer. These
potential gene targets could be leveraged to develop efficient
diagnostics and therapies.
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